EDUCATION

Seating Shapes

ASSESSMENT GOALS

Pelvis and Spine

- Posterior pelvic stability
- Posterior-lateral pelvic stability Lumbar support
- Posterior thoracic stability
- Lateral thoracic stability

NOT PRESENT

Posterior Sacral Support Not Present

- Pelvis will collapse into a

Posterior-Lateral Sacral

Support Not Present

Pelvis and spine may become asymmetrical Pelvis may collapse into a posterior tilt and

rotated position Flattening of the lumbar

. Hips may slide forward

Pelvis may shift laterally Pelvis may become oblique, spine may become laterally flexed

spine

kyphosis Hips sliding forward

- posterior pelvic tilt Flattening of the lumbar
- spine Increase in thoracic spine

Too Little May cause inadequate accommodation of thoracic spine creating forward or lateral collapse of trunk May cause poor head position/control In absence of correct shape may push pelvis and/or trunk forward TOO MUCH

Posterior Thoracic

TOO LITTLE

Support (Shape)

Too Much

- May inhibit function May encourage a collapsed trunk posture
- This can be common with bariatric clients

TOO LOW

TOO LITTLE

TOO HIGH

Lateral Thoracic Support Vertical Placement Range Location must support the ribcage Provide three points of control

- Too Low/Too Shallow
- Thoracic spine may not be
- supported lead to collapse of trunk

Too Deep
• May interfere with upper extremity function and/or cause injury

Thoracic Support (Height)

and poor trunk control May cause skin irritation

Too Low

- Thoracic and/or lumbar spine
- may not be supported

 May lead to collapse of trunk
 and poor trunk control

- Too High
 Upper extremity function may be compromised
- compromised
 May cause instability or discomfort
 May cause sliding away from
 backrest
 May cause increased pressure on
- scapula and thoracic area

Lumbar Support (Shape)

Too Little

- In the absence of posterior pelvic support contour, the lumbar area may collapse
- May cause posterior pelvic tilt May cause sliding of pelvis forward

Too Much

- Pelvis may rotate posteriorly or anteriorly Trunk can fall forward Extensor muscles may
- compensate for leaning forward and inhibit function

ASSESSMENT GOALS

Pelvis and Lower Extremities

- Assess hip flexion Range of Motion (ROM) Assess hamstring length
- Provide lateral stability
- Provide anterior stability
- Maximize surface contact area

Pelvic Contour WidthConsider protecting the trochanters via offloading or immersion/envelopment.

Too Wide

- Trochanters not supported may cause:
- Lateral instability and/or pelvic obliquity Ischial Tuberosities (ITs) can bottom out This may be common in pediatric patients

TOO NARROW

Too Narrow

- This can be common with clients who are bariatric
- Creates a pelvic obliquity
- · Increases pressure on gréater trochanters

Pelvic Contour Lenath

Buttocks should be supported while loading femurs for stability. Ischial Tuberosities (ITs) need to be protected during activity.

- **Too Long** ITs can slide forward into posterior pelvic tilt which can lead to additional loading on coccyx Possible inadequate
- femoral loading May cause increased shear force at ITs

TOO SHORT

Too Short

- Results in insufficient space for IT movement for functional activity
- ITs may press into anterior shelf of cushion causing potential skin integrity issues

Pelvic Contour Depth

The buttocks should be supported while maintaining optimal hip angle. Correct height depends on difference in height between ischials and posterior aspect of femur.

- Too DeepMay cause interference with hip angleMay increase or
- decrease hip flexion angle, depending on hip ROM and amount of support at posterior
- The pelvis may not be optimally loaded which can lead to additional loading at coccyx

Too Shallow

- Femurs will not be loaded
- May not prevent sliding May not provide optimal pressure reduction at the ischials

Femoral Support Length

Femoral Support Length Femoral loading stabilizes the pelvis, positions the lower extremities, and redistributes pressure.

- Too LongPulls the hips forward in the seat which may cause slidingInhibits function
- Increases pressure behind knees

Too Short

- Not enough surface contact area for loading Ischials may have increased
- pressure
- Lower extremities may not be optimally positioned

Ágústsson, A., Sveinsson, Þ, & Rodby-Bousquet, E. (2017). The effect of asymmetrical limited hip flexion on seating posture, scoliosis and windswept hip distortion. Research in Developmental Disabilities,71, 18-23. doi:10.1016/j.ridd.2017.09.019

Rodby-Bousquet, E., Ágústsson, A., Jónsdóttir, G., Czuba, T., Johansson, A., & Hägglund, G. (2012). Interrater reliability and construct validity of the Posture and Postural Ability Scale in adults with cerebral palsy in supine, prone, sitting and standing positions. Clinical Rehabilitation, 28(1), 82-90. doi:10.1177/0269215512465423

Waugh, K., and Crane, B. (2013). A clinical application guide to standardized wheelchair seating measure of the body and seating support surfaces (rev. Ed.). Denver, Co. University of Colorado Denver. Available from:

http://www.ucdenver.edu/academics/AssistiveTechnologyPartners/resources/WheelchairSeating/Pages/WheelchairGuideForm.aspx

DISCLAIMER: FOR PROFESSIONAL USE ONLY. THIS DOCUMENT (AND THE WEBSITE REFERENCED HEREIN) DO NOT PROVIDE MEDICAL ADVICE. Sunrise Medical (US) LLC does not provide clinician services. The information contained on this document (and the website referenced herein), including, but not limited to, the text, graphics, images, and descriptions, are fo informational purposes only and should be utilized as a general resource for clinicians and suppliers to then use clinical reasoning skills to determine optimal seating and mobility solutions for individual patients. No material on this document (or on the website) is intended to be used as (or a substitute for) professional medical advice, diagnosis or treatment. Clinicians should adhere to their professional medical training and their institution's or practice's recommended guidelines. Reliance on this document (and the information contained herein) is solely at your own risk.

